Apa yang Dimaksud dengan “Lingkaran”?
Secara singkat, lingkaran adalah salah satu bangun datar. Jenis bangun datar yang mirip bentuk ban sepeda ini memiliki berbagai rumus yang nggak terlepas dari bagian ilmu Matematika. Kita akan mengetahui serba-serbi rumus lingkaran yang akan kita ulas kali ini.
Namun sebelum itu, kenalan dulu yuk, dengan identitas dari lingkaran.
Lingkaran adalah himpunan semua titik di bidang yang berjarak sama dari suatu titik tetap. Titik tetap ini yang kemudian disebut sebagai pusat lingkaran. Sedangkan, jarak dari pusat ke setiap titik disebut dengan jari-jari.
Biar lebih tergambar, Skollamate bisa lanjut baca bagian di bawah ini untuk tahu detail tentang unsur-unsur lingkaran, ya!
Contoh soal keliling lingkaran dengan jari-jari
Contoh soal keliling lingkaran dengan jari-jari
Ani sedang bermain dengan sebuah roda yang memiliki jari-jari sepanjang 56 cm. Berapakah panjang keliling roda berbentuk lingkaran tersebut?
Lanjutkan membaca artikel di bawah
Karena yang diketahui merupakan jari-jari, maka rumus yang digunakan adalah Keliling Lingkaran = π x 2r. Selain itu, angka jari-jari merupakan kelipatan tujuh yang berarti menggunakan 22/7 sebagai phi. Selanjutnya, kamu tinggal memasukkan angka yang ada.
Jadi, keliling roda yang memiliki panjang jari-jari 56 cm tersebut adalah 352 cm.
Sifat-sifat Lingkaran
Berikut ini sifat-sifat dari lingkaran:
Dikutip melalui buku berjudul Geometri Datar karya Fuat (2020), keliling lingkaran adalah ukuran panjang lingkaran yang dinyatakan dengan satuan panjang garis. Sederhananya, keliling merupakan jarak 1 putaran dari suatu titik lingkaran ke titik itu sendiri.
Di bawah ini adalah rumus keliling lingkaran, dikutip melalui buku berjudul Mandiri Belajar Ulangan Tematik karya Desi Damayanti, dkk.
Sudut Pusat dan Keliling Lingkaran
Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.
Sudut keliling lingkaran dibedakan menjadi:
Itulah macam rumus keliling lingkaran yang dapat digunakan dalam materi matematika.
Bangun datar merupakan salah satu materi yang sering muncul pada mata pelajaran Matematika. Bangun datar terdiri dari persegi, persegi panjang, segitiga, lingkaran, dan lain sebagainya. Setiap bangun datar yang ada, memiliki rumus luas dan keliling yang berbeda-beda. Lantas, apa ya rumus keliling lingkaran?
Sebelum membahas lebih jauh mengenai rumus keliling lingkaran, ada baiknya mengetahui apa itu lingkaran, lalu bagaimana unsur dan sifat-sifatnya. Berikut ini penjelasannya yang berhasil detikEdu rangkum.
Lingkaran bisa dipahami sebagai suatu garis lengkung, yang kedua ujung dan titiknya, terletak pada garis lengkung tersebut dengan jarak yang sama terhadap suatu titik tertentu. Lingkaran bisa diartikan sebagai sekumpulan titik-titik yang tidak terhingga, mempunyai jarak yang sama pada titik tertentu.
SCROLL TO CONTINUE WITH CONTENT
Dikutip melalui buku berjudul Geometri dan Pengukuran Berbasis Pendekatan Saintifik karya Toybah, dkk (2020), Lingkaran adalah himpunan dari titik-titik yang memiliki jarak sama terhadap suatu titik tertentu. Jarak tersebut disebut dengan jari-jari lingkaran.
Sedangkan, titik pusat tertentu bisa disebut sebagai titik pusat lingkaran. Berikut ini unsur-unsur dan sifat-sifat pada lingkaran.
Contoh soal keliling lingkaran dengan phi 22/7
Contoh soal keliling lingkaran dengan phi 22/7
Ada sebuah koin raksasa memiliki panjang jari-jari mencapai 70 cm. Kira-kira, berapa panjang keliling koin tersebut?
Karena yang diketahui jari-jari kelipatan tujuh, penghitungan keliling dilakukan menggunakan rumus Keliling Lingkaran = π x 2r dan phi 22/7, maka:
Maka, keliling koin raksasa tersebut adalah 440 cm.
Gimana, rumus keliling lingkaran dan cara menghitung keliling lingkaran cukup mudah, bukan? Yuk, perbanyak latihan dari contoh soal keliling lingkaran diatas agar makin mudah memahami materinya, ya!
Baca Juga: Sin Cos Tan dalam Trigonometri: Rumus, Tabel, dan Contoh Soal
Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.
Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.
Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.
Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.
Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.
Rumus Keliling Lingkaran
Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.
Rumus keliling lingkaran adalah K = 2πr atau K = πd. Lambang K adalah keliling lingkaran.
Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π). Sedangkan r adalah jari-jari lingkaran.
Selain keliling lingkaran penuh, terdapat rumus untuk menghitung keliling setengah, seperempat, dan tiga perempat lingkaran. Bersumber dari buku “Pasti Bisa Matematika untuk SD/MI Kelas VI” oleh Tim Tunas Karya Guru, berikut pembahasannya.
Gambar Lingkaran (Dok. Penerbit Duta)
Rumus keliling lingkaran dalam gambar tersebut adalah:
1. Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…
Maka, hasil keliling lingkaran adalah 88 cm.
2. Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?
Jadi, keliling lingkaran tersebut adalah 125,6 cm.
Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya. Rumus luas lingkaran adalah L = πr2.
Adapun untuk menghitung luas setengah, seperempat, dan tiga per empat menggunakan:
Contoh Soal Keliling Lingkaran Jika yang Diketahui Luasnya
1. Diketahui sebuah lingkaran memiliki luas 314 cm². Berapa kira-kira keliling dari lingkaran tersebut?Pembahasan:Diketahui:L = 314 cm²π = 3,14
Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²314 = 3,14 x r²r² = 314/3,14r² = 100r = 10
Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 10K = 2 x 31,4K = 62,8 cm
Jadi, keliling dari lingkaran yang mempunyai luas 314 cm² adalah 62,8 cm.
2. Diketahui sebuah lingkaran mempunyai luas 1256 cm². Hitunglah berapa keliling lingkaran tersebut!Pembahasan:Diketahui:L = 1256 cm²π = 3,14
Untuk menentukan keliling, dicari terlebih dahulu jari-jarinya dengan menggunakan rumus luas lingkaran:L = π x r²1256 = 3,14 x r²r² = 1256/3,14r² = 400r = 20
Setelah diketahui jari-jarinya 10, selanjutnya hitung kelilingnya:K = 2 x π x rK = 2 x 3,14 x 20K = 2 x 62,8K = 125,6 cm
Jadi, keliling dari lingkaran yang mempunyai luas 1256 cm² adalah 125,6 cm.
Demikian yang dapat detikEdu sampaikan mengenai rumus keliling lingkaran beserta dengan contoh soalnya. Semoga bermanfaat!
Contoh Soal Keliling Lingkaran Jika yang Diketahui Diameternya
1. Diketahui sebuah lingkaran memiliki diameter 42 cm. Tentukan berapa keliling lingkaran tersebut!Pembahasan:Diketahui:d = 42 cmπ = 22/7
K = π x dK = 22/7 x 42 cmK = 132 cm
Jadi, keliling dari lingkaran dengan diameter 42 cm adalah 132 cm.
2. Hitunglah berapa keliling lingkaran yang memiliki diameter 28 cm!Pembahasan:Diketahui:d = 28 cmπ = 3,14
K = π x d K = 3,14 x 28 cmK = 87,92 cm
Jadi, keliling dari lingkaran dengan diameter 28 cm adalah 87,92 cm.
Unsur-unsur Lingkaran
Yang termasuk dalam unsur-unsur lingkaran antara lain:
Titik pusat merupakan titik tengah pada diameter lingkaran.
Diameter merupakan ruas garis yang bisa menghubungkan dua titik berbeda pada lingkaran melalui pusat lingkaran.
Jari-jari merupakan jarak antara titik pusat dengan sisi lingkaran.
Busur lingkaran merupakan suatu garis lengkung dari keliling lingkaran.
Tali busur merupakan garis yang menghubungkan dua titik lingkaran, namun tidak melalui pusat lingkaran.
Juring merupakan permukaan lingkaran yang dibatasi dengan jari-jari.
Tembereng merupakan permukaan lingkaran yang dibatasi dengan busur dan tali busur.
Apotema adalah jarak di antara dua titik pusat lingkaran dan tali busur.
Contoh soal keliling lingkaran dengan diameter
Contoh soal keliling lingkaran dengan diameter
Danial sedang berenang di kolam berbentuk lingkaran. Sebelum mengitarinya, ia terlebih dahulu ingin mengetahui keliling lingkaran. Apabila diketahui diameternya sepanjang 20 meter, maka berapa kelilingnya?
Yang diketahui dari soal adalah diameter. Maka, menggunakan rumus Keliling Lingkaran = π x d. Kedua, karena panjang diameter bukanlah kelipatan tujuh, maka phi yang digunakan adalah 3,14. Adapun tahapan menghitungnya yakni:
Nah, panjang keliling kolam yang hendak diputari Danial adalah 62,8 meter.